Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Lasers Med Sci ; 38(1): 108, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37076743

ABSTRACT

The association between intravascular photobiomodulation (iPBM) and crossed cerebellar diaschisis (CCD) and cognitive dysfunction in patients with traumatic brain injury (TBI) remains unknown. We postulate that iPBM might enable greater neurologic improvements. The objective of this study was to evaluate the clinical impact of iPBM on the prognosis of patients with TBI. In this longitudinal study, patients who were diagnosed with TBI were recruited. CCD was identified from brain perfusion images when the uptake difference of both cerebella was > 20%. Thus, two groups were identified: CCD( +) and CCD( -). All patients received general traditional physical therapy and three courses of iPBM (helium-neon laser illuminator, 632.8 nm). Treatment assemblies were conducted on weekdays for 2 consecutive weeks as a solitary treatment course. Three courses of iPBM were performed over 2-3 months, with 1-3 weeks of rest between each course. The outcomes were measured using the Rancho Los Amigos Levels of Cognitive Functioning (LCF) tool. The chi-square test was used to compare categorical variables. Generalized estimating equations were used to verify the associations of various effects between the two groups. p < 0.05 indicated a statistically significant difference. Thirty patients were included and classified into the CCD( +) and CCD( -) groups (n = 15, each group). Statistics showed that before iPBM, CCD in the CCD( +) group was 2.74 (exp 1.0081) times higher than that of CCD( -) group (p = 0.1632). After iPBM, the CCD was 0.64 (exp-0.4436) times lower in the CCD( +) group than in the CCD( -) group (p < 0.0001). Cognitive assessment revealed that, before iPBM, the CCD( +) group had a non-significantly 0.1030 lower LCF score than that of CCD( -) group (p = 0.1632). Similarly, the CCD( +) group had a non-significantly 0.0013 higher score than that of CCD( -) after iPBM treatment (p = 0.7041), indicating no significant differences between the CCD( +) or CCD( -) following iPBM and general physical therapy. CCD was less likely to appear in iPBM-treated patients. Additionally, iPBM was not associated with LCF score. Administration of iPBM could be applied in TBI patients to reduce the occurrence of CCD. The study failed to show differences in cognitive function after iPBM, which still serves as an alternative non-pharmacological intervention.


Subject(s)
Brain Injuries, Traumatic , Cognitive Dysfunction , Diaschisis , Endovascular Procedures , Low-Level Light Therapy , Humans , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/radiotherapy , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/therapy , Diaschisis/physiopathology , Diaschisis/radiotherapy , Longitudinal Studies , Low-Level Light Therapy/methods , Treatment Outcome , Male , Female , Adult , Middle Aged
2.
Ageing Res Rev ; 83: 101786, 2023 01.
Article in English | MEDLINE | ID: mdl-36371017

ABSTRACT

BACKGROUND: Transcranial photobiomodulation (tPBM) has been studied for over a decade as a possible cognitive intervention. OBJECTIVE: To evaluate the effect of tPBM for enhancing human cognitive function in healthy adults and remediating impaired cognitive function in adults with cognitive disorders. METHODS: A systematic literature search from three electronic databases (PubMed, Scopus, Web of Science) was conducted from 1987 to May 2022. The cognitive function being evaluated included learning and memory, attention, executive function, language, and global cognitive function. RESULTS: Of the 35 studies identified, 29 (82.9 %) studies reported positive improvement in cognitive functions after tPBM. All nine studies on participants with subjective memory complaints, mild cognitive impairment, and dementia, showed positive outcomes. Seven (87.5 %) studies on traumatic brain injury (TBI) patients also showed positive results. A series of clinical trials on stroke patients showed positive trends on improved neurological deficit at first, but was prematurely terminated later at phase III due to the lack of statistical significance. One of the most common protocols for clinical populations employed devices delivering near-infrared light (810 nm), the irradiance of 20-25 mW/cm2, and fluence of 1-10 J/cm2. While this was common, the reviewed protocols also included other wavelengths of light ranging from visible, red (630-635 nm) to invisible near-infrared maximum wavelengths of 1060-1068 nm. CONCLUSIONS: tPBM seems to improve cognitive function. However, only half of the reviewed clinical trials were randomized control trials, further investigation is warranted.


Subject(s)
Brain Injuries, Traumatic , Cognition Disorders , Cognitive Dysfunction , Humans , Cognition , Executive Function , Brain Injuries, Traumatic/radiotherapy
3.
J Neurotrauma ; 40(3-4): 210-227, 2023 02.
Article in English | MEDLINE | ID: mdl-35698294

ABSTRACT

Photobiomodulation (PBM) is a therapeutic modality that has gained increasing interest in neuroscience applications, including acute traumatic brain injury (TBI). Its proposed mechanisms for therapeutic effect when delivered to the injured brain include antiapoptotic and anti-inflammatory effects. This systematic review summarizes the available evidence for the value of PBM in improving outcomes in acute TBI and presents a meta-analysis of the pre-clinical evidence for neurological severity score (NSS) and lesion size in animal models of TBI. A systematic review of the literature was performed, with searches and data extraction performed independently in duplicate by two authors. Eighteen published articles were identified for inclusion: seventeen pre-clinical studies of in vivo animal models and one clinical study in human patients. The available human study supports safety and feasibility of PBM in acute moderate TBI. For pre-clinical studies, meta-analysis for NSS and lesion size were found to favor intervention versus control. Subgroup analysis based on PBM parameter variables for these outcomes was performed. Favorable parameters were identified as: wavelengths in the region of 665 nm and 810 nm; time to first administration of PBM ≤4 h; total number of daily treatments ≤3. No differences were identified between pulsed and continuous wave modes or energy delivery. Mechanistic substudies within included in vivo studies are presented and were found to support hypotheses of antiapoptotic, anti-inflammatory, and pro-proliferative effects, and a modulation of cellular metabolism. This systematic review provides substantial meta-analysis evidence of the benefits of PBM on functional and histological outcomes of TBI in in vivo mammalian models. Study design and PBM parameters should be closely considered for future human clinical studies.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Low-Level Light Therapy , Animals , Humans , Brain Injuries, Traumatic/radiotherapy , Brain , Mammals
4.
J Photochem Photobiol B ; 221: 112207, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34119804

ABSTRACT

Transcranial photobiomodulation (tPBM) is the process of delivering light photons through the skull to benefit from its modifying effect. Brain disorders are important health problems. The aim of this review was to determine the existing evidence of effectiveness, useful parameters, and safety of tPBM in the management of traumatic brain injury, stroke, Parkinson, and Alzheimer's disease as the common brain disorders. Four online databases, including Cochrane, Pub Med, Embase, and Google scholar were searched according to the Preferred Reporting Items for Systematic Reviews and meta-analyses (PRISMA) guidelines. 4728 articles were obtained in the initial search. Only those articles that were published until September 2020 and designed as randomized clinical trials (RCTs) or animal-controlled studies were included. 6 RCTs, 2 related supplementary articles, and 38 controlled animal studies met the inclusion criteria of this study. No RCTs were performed in the fields of Alzheimer's and Parkinson's diseases. The human RCTs and animal studies reported no adverse events resulted from the use of tPBM. Useful parameters of tPBM were identified according to the controlled animal studies. Since the investigated RCTs had no homogenous results, making an evidence-based decision for definite therapeutic application of tPBM is still unattainable. Altogether, these data support the need for large confirmatory well-designed RCTs for using tPBM as a novel, safe, and easy-to-administer treatment of brain disorders. EVIDENCE BEFORE THIS STUDY: High prevalence and complications of brain disorders and also side effects of neuropsychiatric medications have encouraged researchers to find alternative therapeutic techniques which tPBM can be one of them. In present review we tried to determine the existing evidence of effectiveness, useful parameters, and safety of tPBM in the management of traumatic brain injury, stroke, Alzheimer, and Parkinson's disease as common brain disorders. Four online databases, including "Cochrane", "Pub Med", "Embase", and "Google scholar" were searched. Only those articles that were published until September 2020 and designed as RCTs or animal-controlled studies were included. Search keywords were the followings: transcranial photobiomodulation" OR "transcranial low-level laser therapy" AND "stroke" OR "traumatic brain injury" OR "Alzheimer" OR "Parkinson". Several studies have confirmed effectiveness of tPBM in treatment of different brain disorders but the level of evidence of its effectiveness remain to be determined. ADDED VALUE OF THIS STUDY: In this study we systematically reviewed human RCTs to determine the existing evidence of tPBM effectiveness in management of four mentioned brain disorders. Since the outcomes of the reviewed RCTs were not homogeneous, further well-designed RCTs are required to decide more definitively on the evidence of this noninvasive and probably safe therapeutic intervention. We hypothesized that non-homogeneous outcomes could be due to inefficiency of PBM parameters. Controlled animal studies have the advantage of using objective tests to evaluate the results and compare them with the control group. We determined useful tPBM parameters based on these studies. IMPLICATIONS OF ALL THE AVAILABLE EVIDENCE: This research is part of our main project of tinnitus treatment using photobiomodulation (PBM). Evidence of central nervous system involvement in tinnitus led us to believe that treatment protocol of tinnitus should also include transcranial PBM. The determined useful parameters can be helpful in designing more efficient tPBM protocols in the management of brain disorders and tinnitus as a common debilitating symptom that can be associated with these disorders.


Subject(s)
Brain Diseases/radiotherapy , Low-Level Light Therapy , Alzheimer Disease/radiotherapy , Animals , Brain Injuries, Traumatic/radiotherapy , Disease Models, Animal , Humans , Parkinson Disease/radiotherapy , Randomized Controlled Trials as Topic
5.
Neuroreport ; 32(8): 711-720, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33876783

ABSTRACT

OBJECTIVE: To explore the protective effect of acute splenic irradiation against traumatic brain injury (TBI) in rats. METHODS: A rat model of TBI was established according to Feeney's method. Splenic irradiation was performed by the reverse intensity-modulated radiation therapy (IMRT) source-axis distance (SAD) irradiation technique. Rat brain tissue samples were collected, the water content of the rat brain tissue was determined and the abundance of microglia was detected by immunofluorescence. Spleens were collected to measure the spleen index. Lung, liver, small intestine and kidney tissues were taken for hematoxylin and eosin staining to observe whether there was radiation-induced pathological damage. Peripheral blood was collected to detect tuftsin and the inflammatory factors IL-6 and IL-10. RESULTS: Compared with the nonirradiated TBI rat group, the 4-h spleen irradiation TBI rat group showed (1) increased behavioral scores at 3 days after TBI (P < 0.05), (2) reduced water content of the ipsilateral hemisphere at 3 days after TBI, (3) reduced spleen index at 3 and 7 days after TBI, (4) reduced number of microglia cells infiltrating around the lesion at 7 days after TBI, (5) reduced IL-6 levels at 3 days after TBI, (6) increased IL-10 levels at 3 and 5days after TBI and (7) Compared with the nonirradiated TBI rat group, the 8-h spleen irradiation TBI rat group showed reduced tuftsin levels at 3 and 7days after TBI. CONCLUSIONS: Acute splenic irradiation had a protective effect in rats with TBI.


Subject(s)
Brain Injuries, Traumatic/radiotherapy , Neuroprotection/physiology , Radiotherapy/methods , Spleen/radiation effects , Animals , Brain/metabolism , Brain Injuries, Traumatic/metabolism , Cytokines/blood , Disease Models, Animal , Microglia/metabolism , Rats , Rats, Sprague-Dawley
6.
JAMA Netw Open ; 3(9): e2017337, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32926117

ABSTRACT

Importance: Preclinical studies have shown that transcranial near-infrared low-level light therapy (LLLT) administered after traumatic brain injury (TBI) confers a neuroprotective response. Objectives: To assess the feasibility and safety of LLLT administered acutely after a moderate TBI and the neuroreactivity to LLLT through quantitative magnetic resonance imaging metrics and neurocognitive assessment. Design, Setting, and Participants: A randomized, single-center, prospective, double-blind, placebo-controlled parallel-group trial was conducted from November 27, 2015, through July 11, 2019. Participants included 68 men and women with acute, nonpenetrating, moderate TBI who were randomized to LLLT or sham treatment. Analysis of the response-evaluable population was conducted. Interventions: Transcranial LLLT was administered using a custom-built helmet starting within 72 hours after the trauma. Magnetic resonance imaging was performed in the acute (within 72 hours), early subacute (2-3 weeks), and late subacute (approximately 3 months) stages of recovery. Clinical assessments were performed concomitantly and at 6 months via the Rivermead Post-Concussion Questionnaire (RPQ), a 16-item questionnaire with each item assessed on a 5-point scale ranging from 0 (no problem) to 4 (severe problem). Main Outcomes and Measures: The number of participants to successfully and safely complete LLLT without any adverse events within the first 7 days after the therapy was the primary outcome measure. Secondary outcomes were the differential effect of LLLT on MR brain diffusion parameters and RPQ scores compared with the sham group. Results: Of the 68 patients who were randomized (33 to LLLT and 35 to sham therapy), 28 completed at least 1 LLLT session. No adverse events referable to LLLT were reported. Forty-three patients (22 men [51.2%]; mean [SD] age, 50.49 [17.44] years]) completed the study with at least 1 magnetic resonance imaging scan: 19 individuals in the LLLT group and 24 in the sham treatment group. Radial diffusivity (RD), mean diffusivity (MD), and fractional anisotropy (FA) showed significant time and treatment interaction at 3-month time point (RD: 0.013; 95% CI, 0.006 to 0.019; P < .001; MD: 0.008; 95% CI, 0.001 to 0.015; P = .03; FA: -0.018; 95% CI, -0.026 to -0.010; P < .001).The LLLT group had lower RPQ scores, but this effect did not reach statistical significance (time effect P = .39, treatment effect P = .61, and time × treatment effect P = .91). Conclusions and Relevance: In this randomized clinical trial, LLLT was feasible in all patients and did not exhibit any adverse events. Light therapy altered multiple diffusion tensor parameters in a statistically significant manner in the late subacute stage. This study provides the first human evidence to date that light therapy engages neural substrates that play a role in the pathophysiologic factors of moderate TBI and also suggests diffusion imaging as the biomarker of therapeutic response. Trial Registration: ClinicalTrials.gov Identifier: NCT02233413.


Subject(s)
Brain Injuries, Traumatic/radiotherapy , Low-Level Light Therapy/methods , Post-Concussion Syndrome/physiopathology , White Matter/diagnostic imaging , Adult , Aged , Anisotropy , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/physiopathology , Diffusion Tensor Imaging , Double-Blind Method , Feasibility Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/diagnostic imaging , Placebos , Severity of Illness Index , Surveys and Questionnaires , Treatment Outcome
7.
Photobiomodul Photomed Laser Surg ; 37(10): 657-666, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31647777

ABSTRACT

Objective: This research evaluated the hemodynamic conditions before and after the transcranial photobiomodulation therapy (PBMT) and investigated neurocognitive changes before and after treatment. Background: Traumatic brain injury (TBI) is the major cause of morbidity and mortality among individuals 21-60 years old and causes ∼500,000 people to be hospitalized in Brazil annually. Some survivors develop an irreversible decrease in neurological function, and the mortality rate is as high as 70% in severe cases. PBMT is an alternative to treat secondary injuries due to TBI. Methods: This multidisciplinary clinical study was carried out on 10 chronic adult patients with severe TBI, who were treated with PBMT with an optical device containing 13 sets of 4 light emitting diodes, and underwent hemodynamic transcranial Doppler and neuropsychological evaluation at three different times: pre-PBMT, post-PBMT (after a week), and late-PBMT, which occurred 3 months after the last session. The patients received PBMTs three times a week, for 6 weeks. PBMTs were performed for 18 sessions for 6 weeks and 30 min per session. Results: The results found an alteration in the cerebral blood flow (CBF) as well as a consequent increase of the cerebral oxygenation that helped to improve the cerebral function. Conclusions: The PBMT contributed to increased CBF, evidenced mainly by the increased left peak systolic velocity, which consequently increased the hemodynamic response after the PBMT and impacts on the peripheral cerebral perfusion contributing to improved cerebral function.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/rehabilitation , Brain Injuries, Traumatic/radiotherapy , Cerebrovascular Circulation/radiation effects , Low-Level Light Therapy/methods , Adult , Brazil , Cerebrovascular Circulation/physiology , Chronic Disease , Cognition/radiation effects , Cohort Studies , Disability Evaluation , Female , Follow-Up Studies , Humans , Injury Severity Score , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuropsychological Tests , Retrospective Studies , Time Factors , Treatment Outcome , Ultrasonography, Doppler/methods , Young Adult
8.
Medicine (Baltimore) ; 98(25): e15851, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31232920

ABSTRACT

BACKGROUND: Central nervous system diseases such as stroke, spinal cord injury, traumatic brain injury, and multiple sclerosis can be fatal or cause sequelae, affecting sensorimotor and cardiorespiratory systems and quality of life. These subjects present a low response to aerobic and resistance exercise, due to decreased recruitment of muscle fibers and reduction of metabolic capacity. Aerobic exercises bring benefits in terms of fatigue retardation, gait improvement, regulation of the autonomic nervous system, neuroprotection of the brain, stimulation of the production of endogenous neutrotransmitters related to general well-being, and a favoring of neuroplasticity. Photobiomodulation (PBM Therapy) (previously known as low-level laser therapy), and especially transcranial PBM Therapy, has shown benefits in animals and humans such as cognitive improvement, memory, and behavioral improvement, including attenuation of depression and anxiety, and increased cortical oxygenation. The aims of this trial will be to evaluate the parameters related to the function of the musculoskeletal and cardiorespiratory system and the impact of PBM therapy on these parameters, as part of a rehabilitation and training program for people with reduced mobility. METHODS: This is a randomized, double-blind, placebo-controlled trial with 3 groups: Control, only cardiorespiratory rehabilitation (CCR), CCR with PBM Therapy (CR-PBM), CCR and placebo PBM Therapy (CR-PlaceboPBM). n = 90, 30 per group. PBM Therapy parameters: 810 nm laser, 0.028 cm, 100 mW, 3.5 W/cm, 30 seconds per point, 3 J per point, 107.1 J /cm to 3 electroencephalogram points F7 and F8 and AFz. The trial will be conducted at the University Clinics and the sessions will be 1 hour twice a week for 9 weeks. Baseline, intermediate (4th week), final (9th week), and 2-month follow-up will be performed. Muscular activation, heart rate variability, lung volumes and capacities, fatigability, exercise tolerance, cognition, and quality of life at baseline will be evaluated. Subsequent to baseline evaluations, the PBM Therapy groups will be offered laser therapy (active or inactive); all groups will then receive CCR. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov ID - NCT03751306 (approval date: November 22, 2018).


Subject(s)
Brain Injuries, Traumatic/rehabilitation , Low-Level Light Therapy , Multiple Sclerosis/rehabilitation , Spinal Cord Injuries/rehabilitation , Adolescent , Adult , Aged , Aged, 80 and over , Brain Injuries, Traumatic/radiotherapy , Double-Blind Method , Female , Humans , Male , Middle Aged , Multiple Sclerosis/radiotherapy , Neuropsychological Tests , Quality of Life , Randomized Controlled Trials as Topic , Recovery of Function , Respiratory Function Tests , Spinal Cord Injuries/radiotherapy , Treatment Outcome , Young Adult
9.
Photobiomodul Photomed Laser Surg ; 37(2): 77-84, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31050928

ABSTRACT

Objective: This study explored the outcome of applying red/near-infrared light therapy using light-emitting diodes (LEDs) pulsed with three different frequencies transcranially to treat traumatic brain injury (TBI) in Veterans. Background: Photobiomodulation therapy (PBMT) using LEDs has been shown to have positive effects on TBI in humans and animal models. Materials and methods: Twelve symptomatic military Veterans diagnosed with chronic TBI >18 months post-trauma received pulsed transcranial PBMT (tPBMT) using two neoprene therapy pads containing 220 infrared and 180 red LEDs, generating a power output of 3.3 W and an average power density of 6.4 mW/cm2 for 20 min, thrice per week over 6 weeks. Outcome measures included standardized neuropsychological test scores and qualitative and quantitative single photon emission computed tomography (SPECT) measures of regional cerebral blood flow (rCBF). Results: Pulsed tPBMT significantly improved neuropsychological scores in 6 of 15 subscales (40.0%; p < 0.05; two tailed). SPECT analysis showed increase in rCBF in 8 of 12 (66.7%) study participants. Quantitative SPECT analysis revealed a significant increase in rCBF in this subgroup of study participants and a significant difference between pre-treatment and post-treatment gamma ray counts per cubic centimeter [t = 3.77, df = 7, p = 0.007, 95% confidence interval (95,543.21-21,931.82)]. This is the first study to report quantitative SPECT analysis of rCBF in regions of interest following pulsed tPBMT with LEDs in TBI. Conclusions: Pulsed tPBMT using LEDs shows promise in improving cognitive function and rCBF several years after TBI. Larger, controlled studies are indicated.


Subject(s)
Brain Injuries, Traumatic/radiotherapy , Brain Injury, Chronic/radiotherapy , Cerebrovascular Circulation/radiation effects , Cognition/radiation effects , Low-Level Light Therapy , Veterans , Adult , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/psychology , Brain Injury, Chronic/physiopathology , Brain Injury, Chronic/psychology , Cohort Studies , Humans , Male , Middle Aged , Neuropsychological Tests , Tomography, Emission-Computed, Single-Photon , Treatment Outcome , Young Adult
10.
Trials ; 19(1): 249, 2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29690927

ABSTRACT

BACKGROUND: Photobiomodulation describes the use of red or near-infrared light to stimulate or regenerate tissue. It was discovered that near-infrared wavelengths (800-900 nm) and red (600 nm) light-emitting diodes (LED) are able to penetrate through the scalp and skull and have the potential to improve the subnormal cellular activity of compromised brain tissue. Different experimental and clinical studies were performed to test LED therapy for traumatic brain injury (TBI) with promising results. One of the proposals of this present study is to develop different approaches to maximize the positive effects of this therapy and improve the quality of life of TBI patients. METHODS/DESIGN: This is a double-blinded, randomized, controlled trial of patients with diffuse axonal injury (DAI) due to a severe TBI in an acute stage (less than 8 h). Thirty two patients will be randomized to active coil helmet and inactive coil (sham) groups in a 1:1 ratio. The protocol includes 18 sessions of transcranial LED stimulation (627 nm, 70 mW/cm2, 10 J/cm2) at four points of the frontal and parietal regions for 30 s each, totaling 120 s, three times per week for 6 weeks, lasting 30 min. Patients will be evaluated with the Glasgow Outcome Scale Extended (GOSE) before stimulation and 1, 3, and 6 months after the first stimulation. The study hypotheses are as follows: (1) transcranial LED therapy (TCLT) will improve the cognitive function of DAI patients and (2) TCLT will promote beneficial hemodynamic changes in cerebral circulation. DISCUSSION: This study evaluates early and delayed effects of TCLT on the cognitive rehabilitation for DAI following severe acute TBI. There is a paucity of studies regarding the use of this therapy for cognitive improvement in TBI. There are some experimental studies and case series presenting interesting results for TBI cognitive improvement but no clinical trials. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03281759 . Registered on 13 September 2017.


Subject(s)
Brain Injuries, Traumatic/radiotherapy , Brain/radiation effects , Cognition/radiation effects , Diffuse Axonal Injury/radiotherapy , Lasers, Semiconductor/therapeutic use , Low-Level Light Therapy/instrumentation , Adolescent , Adult , Brain/blood supply , Brain/physiopathology , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/psychology , Brazil , Cerebrovascular Circulation/radiation effects , Diffuse Axonal Injury/diagnosis , Diffuse Axonal Injury/physiopathology , Diffuse Axonal Injury/psychology , Double-Blind Method , Female , Glasgow Coma Scale , Humans , Lasers, Semiconductor/adverse effects , Low-Level Light Therapy/adverse effects , Male , Middle Aged , Neurologic Examination , Quality of Life , Randomized Controlled Trials as Topic , Recovery of Function , Time Factors , Treatment Outcome , Young Adult
11.
Adv Exp Med Biol ; 1096: 41-52, 2018.
Article in English | MEDLINE | ID: mdl-29572678

ABSTRACT

Research into photobiomodulation reveals beneficial effects of light therapy for a rapidly expanding list of medical conditions and illnesses. Although it has become more widely accepted by the mainstream medicine, the effects and mechanisms of action appear to be poorly understood. The therapeutic benefits of photobiomodulation using low-energy red lasers extend far beyond superficial applications, with a well-described physics allowing an understanding of how red lasers of certain optimum intensities may cross the cranium. We now have a model for explaining potential therapeusis for applications in functional neurology that include stroke, traumatic brain injury, and neurodegenerative conditions in addition to the currently approved functions in lipolysis, in onychomycosis treatment, and in pain management.


Subject(s)
Brain Injuries, Traumatic/radiotherapy , Low-Level Light Therapy/methods , Neurodegenerative Diseases/radiotherapy , Stroke/radiotherapy , Brain Injuries, Traumatic/physiopathology , Humans , Lipolysis/physiology , Lipolysis/radiation effects , Neurodegenerative Diseases/physiopathology , Onychomycosis/physiopathology , Onychomycosis/radiotherapy , Pain/physiopathology , Pain/radiotherapy , Stroke/physiopathology
12.
Trials ; 19(1): 17, 2018 Jan 08.
Article in English | MEDLINE | ID: mdl-29310710

ABSTRACT

BACKGROUND: Photobiomodulation using low-level laser therapy (LLLT) has been tested as a new technique to optimize recovery of patients with traumatic brain injury (TBI). The aim of this study is to evaluate inhibitory attentional control after 18 sessions of active LLLT and compare with the placebo group (sham LLLT). Our exploratory analysis will evaluate the efficacy of the active LLLT on verbal and visuospatial episodic memory, executive functions (working memory, verbal and visuospatial fluency, attentional processes), and anxiety and depressive symptoms compared to the sham group. METHODS/DESIGN: A randomized double-blinded trial will be made in 36 patients with moderate and severe TBI. The active LLLT will use an optical device composed of LEDs emitting 632 nm of radiation at the site with full potency of 830 mW. The cranial region with an area of 400 cm2 will be irradiated for 30 min, giving a total dose per session of 3.74 J/cm2. The sham LLLT group contains only an LED device with power < 1 mW, only serving to simulate the irradiation. Each patient will be irradiated three times per week for six weeks, totaling 18 sessions. Neuropsychological assessments will be held one week before the beginning of the sessions, after one week, and three months after the end of LLLT sessions. Memory domain, attention, executive functioning, and visual construction will be evaluated, in addition to symptoms of depression, anxiety, and social demographics. DISCUSSION: LLLT has been demonstrated as a safe and effective technique in significantly improving the memory, attention, and mood performance in healthy and neurologic patients. We expect that our trial can complement previous finds, as an effective low-cost therapy to improve cognitive sequel after TBI. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02393079 . Registered on 20 February 2015.


Subject(s)
Anxiety/therapy , Brain Injuries, Traumatic/radiotherapy , Brain Injury, Chronic/radiotherapy , Brain/radiation effects , Depression/therapy , Low-Level Light Therapy/methods , Adolescent , Adult , Affect/radiation effects , Anxiety/diagnosis , Anxiety/physiopathology , Anxiety/psychology , Attention/radiation effects , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/psychology , Brain Injury, Chronic/diagnosis , Brain Injury, Chronic/physiopathology , Brain Injury, Chronic/psychology , Brazil , Depression/diagnosis , Depression/physiopathology , Depression/psychology , Double-Blind Method , Executive Function/radiation effects , Female , Humans , Low-Level Light Therapy/adverse effects , Male , Memory, Episodic , Middle Aged , Multicenter Studies as Topic , Neuropsychological Tests , Prospective Studies , Radiation Dosage , Randomized Controlled Trials as Topic , Time Factors , Treatment Outcome , Young Adult
13.
J Neurosci Res ; 96(4): 731-743, 2018 04.
Article in English | MEDLINE | ID: mdl-29131369

ABSTRACT

There is a notable lack of therapeutic alternatives for what is fast becoming a global epidemic of traumatic brain injury (TBI). Photobiomodulation (PBM) employs red or near-infrared (NIR) light (600-1100nm) to stimulate healing, protect tissue from dying, increase mitochondrial function, improve blood flow, and tissue oxygenation. PBM can also act to reduce swelling, increase antioxidants, decrease inflammation, protect against apoptosis, and modulate microglial activation state. All these mechanisms of action strongly suggest that PBM delivered to the head should be beneficial in cases of both acute and chronic TBI. Most reports have used NIR light either from lasers or from light-emitting diodes (LEDs). Many studies in small animal models of acute TBI have found positive effects on neurological function, learning and memory, and reduced inflammation and cell death in the brain. There is evidence that PBM can help the brain repair itself by stimulating neurogenesis, upregulating BDNF synthesis, and encouraging synaptogenesis. In healthy human volunteers (including students and healthy elderly women), PBM has been shown to increase regional cerebral blood flow, tissue oxygenation, and improve memory, mood, and cognitive function. Clinical studies have been conducted in patients suffering from the chronic effects of TBI. There have been reports showing improvement in executive function, working memory, and sleep. Functional magnetic resonance imaging has shown modulation of activation in intrinsic brain networks likely to be damaged in TBI (default mode network and salience network).


Subject(s)
Brain Injuries, Traumatic/radiotherapy , Low-Level Light Therapy , Stroke/radiotherapy , Animals , Brain Injuries, Traumatic/metabolism , Female , Humans , Laser Therapy , Male , Stroke/metabolism , Transcription, Genetic/radiation effects
14.
J Biophotonics ; 9(11-12): 1263-1272, 2016 12.
Article in English | MEDLINE | ID: mdl-26990361

ABSTRACT

We previously showed that near-infrared laser photobiomodulation (PBM) (810 nm, CW, 18 J/cm2 , 25 mW/cm2 ) delivered to the mouse daily for 3-days after a controlled cortical impact traumatic brain injury (TBI) gave a significant improvement in neurological/cognitive function. However the same parameters delivered 14X daily gave significantly less benefit. This biphasic dose response intrigued us, and we decided to follow the mice that received 3X or 14X laser treatments out to 56-days post-TBI. We found the 14X group showed worse neurological function than the no-treatment TBI group at 2-weeks, but started to improve steadily during the next 6-weeks, and by 56-days were significantly better than the no-treatment TBI mice, but still worse than the 3X mice. A marker of activated glial cells (GFAP) was significantly increased in the brain regions (compared to both untreated TBI and 3X groups) at 4-weeks in the 14X group, but the GFAP had fallen to low levels in both 3X and 14X groups by 8-weeks. We conclude that an excessive number of laser-treatments delivered to mice can temporarily inhibit the process of brain repair stimulated by tPBM, but then the inhibitory effect ceases, and brain repair can resume. The mechanism may be temporary induction of reactive gliosis.


Subject(s)
Brain Injuries, Traumatic/radiotherapy , Brain/radiation effects , Low-Level Light Therapy , Animals , Dose-Response Relationship, Radiation , Glial Fibrillary Acidic Protein/metabolism , Mice , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...